Credit Risk Management and Modeling

Doc. RNDr. Jiří Witzany, Ph.D.
jiri.witzany@vse.cz, NB 178
Office hours: Tuesday 10-12
Literature

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Title</th>
<th>Author</th>
<th>Year of Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>Credit Risk Management and Modeling</td>
<td>Witzany, J.</td>
<td>2010, Oeconomica, pp. 214</td>
</tr>
</tbody>
</table>

Course Organization: project (scoring function development), small midterm test (26.3.), final test (14.5. ?)
Content

• Introduction
• Credit Risk Management
 – Credit Risk Organization
 – Trading and Investment Banking
 – Basel II
• Rating and Scoring Systems
 – Rating Validation
 – Analytical Ratings
 – Automated Rating Systems
Content - continued

– Expected Loss, LGD, and EAD
– Basel II Requirements

• Portfolio Credit Risk
 – CreditMetrics
 – Credit Risk+
 – Credit Portfolio View
 – KMV Portfolio Manager
 – Basel II Capital requirements
Content - continued

• Credit Derivatives
 – Overview of Basic Credit Derivatives Products
 – Intensity of Default Stochastic Modeling
 – Copula Correlation Models
 – CDS and CDO Valuation
Introduction

• Classical commercial bank credit risk management
 – Corporate loans approval and pricing
 – Retail loans approval and pricing
 – Provisioning and workout
 – Regulatory requirements – Basel II
 – Loan portfolio reporting and management
 – Financial markets (counterparty) credit risk
Introduction

• Credit approval – can we get a crystal ball?
• What is the first, the chicken or the egg, Basel II or credit rating?
• What is new in Basel III?
• Should we start the course with credit derivatives?
Credit Risk Management Organization

Separation of Powers – Risk Organization Independence!!!
Credit Risk Process

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Credit origination</th>
<th>Monitoring</th>
<th>Workout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business units</td>
<td>• Business units</td>
<td>• Business units</td>
<td>• Debt Recovery</td>
</tr>
<tr>
<td>Credit Risk</td>
<td>• Credit Risk</td>
<td>• Credit Risk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Market Risk</td>
<td>• Market Risk</td>
<td></td>
</tr>
<tr>
<td>Key activities</td>
<td>• Credit rating</td>
<td>• Monitoring and</td>
<td>• Recovering of bad</td>
</tr>
<tr>
<td></td>
<td>• Evaluation of</td>
<td>identification of cases</td>
<td>debts</td>
</tr>
<tr>
<td></td>
<td>applications</td>
<td>turning bad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Risk adjusted</td>
<td>• Reclassification /</td>
<td>Closing unsolvable</td>
</tr>
<tr>
<td></td>
<td>pricing</td>
<td>Provisioning of bad</td>
<td>cases</td>
</tr>
<tr>
<td></td>
<td>• Collateral</td>
<td>loans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>valuation</td>
<td>• Corrective actions</td>
<td></td>
</tr>
</tbody>
</table>

Importance of credit risk information management!!!
Counterparty and Settlement Risk on Financial Markets

Settlement Risk only at the settlement date
Counterparty Risk over the transaction life
Counterparty Risk Equivalents

Exposure = max(market value, 0) + \(x\% \cdot \text{Nominal amount} \)

Growing global counterparty risk!!!
Could be partially reduced through netting agreements
Trading Credit Risk Organization

Importance of Back Office independence!!!
The risks must not be underestimated

Craig Broderick, responsible for risk management in Goldman Sachs in 2007 said with self-confidence: “Our risk culture has always been good in my view, but it is stronger than ever today. We have evolved from a firm where you could take a little bit of market risk and no credit risk, to a place that takes quite a bit of market and credit risk in many of our activities. However, we do so with the clear proviso that we will take only the risks that we understand, can control and are being compensated for.” In spite of that Goldman Sachs suffered huge losses at the end of 2008 and had to be transformed (together with Morgan Stanley) from an investment bank to a bank holding company eligible for help from the Federal Reserve.
Basel II - History

- 1988: 1st Capital Accord – Basel I (BCBS, BIS)
- 1996: Market Risk Amendment
- 1999: Basel II 1st Consultative Paper
- 2004: The New Capital Accord - Basel II
- 2006: EU Capital Adequacy Directive
- 2007: CNB Provision on Basel II
- 2008: Basel II effective for banks
- 2010: Basel III following the crisis (effective 2013-2019)
Basel II - Principles

Expected Loss (EL) and Unexpected Loss (UL)

Value-at-Risk (VaR)

Frequency

100% minus Confidence Level

Potential Losses
Basel II Structure

Part 1: Scope of Application

Part 2: The First Pillar
- Minimum Capital Requirements
 I. Calculation of minimum capital requirements
 I.a. Constituents of capital
 II. Credit risk
 - Standardised Approach
 III. Credit Risk
 - Internal Ratings Based Approach
 IV. Credit Risk
 - Securitisation Framework

Part 3: The Second Pillar
- Supervisory Review Process
 V. Operational Risk
 VI. Market risk

Part 4: The Third Pillar
- Market Discipline
Basel II Qualitative Requirements

441. Banks must have **independent credit risk control units** that are responsible for the design or selection, implementation and performance of their internal rating systems. The unit(s) must be functionally independent from the personnel and management functions responsible for originating exposures. Areas of responsibility must include:

- Testing and monitoring internal grades;
- Production and analysis of summary reports from the bank’s rating system, to include historical default data sorted by rating at the time of default and one year prior to default, grade migration analyses, and monitoring of trends in key rating criteria;
- Implementing procedures to verify that rating definitions are consistently applied across departments and geographic areas;
- Reviewing and documenting any changes to the rating process, including the reasons for the changes; and
- Reviewing the rating criteria to evaluate if they remain predictive of risk. Changes to the rating process, criteria or individual rating parameters must be documented and retained for supervisors to review.
Basel II Qualitative Requirements

730. *The bank’s board of directors has responsibility for setting the bank’s tolerance for risks.* It should also ensure that management establishes a framework for assessing the various risks, develops a system to relate risk to the bank’s capital level, and establishes a method for monitoring compliance with internal policies. It is likewise important that the *board of directors adopts and supports strong internal controls and written policies* and procedures and ensures that management effectively communicates these throughout the organization….
Content

✓ Introduction
✓ Credit Risk Management
➢ Rating and Scoring Systems
 • Portfolio Credit Risk Modeling
 • Credit Derivatives
Rating/PD Prediction - Can We Predict the Future?

PAST
- Historical data
- Experience
- Know-how

Present time

Time horizon?
- Default/Loss Definition?

FUTURE?
- Probability of Default?
- Expected Loss?
- Loss distribution?

Actual Client/
- Exposure/
- Application
- Information
Rating and Scoring Systems

- Rating/scoring system could be in general a black box
- How do we measure quality of a rating system?
Rating Validation – Performance Measurement

- Validation – measurement of prediction power – does the rating meet our expectations?

- Exact definitions:
 - Time horizon
 - Debtor or facility?
 - Current situation or conditional on a new loan?
 - Definition of default?
 - Probability of default prediction or just discrimination between better and worse?
Default History

Do we observe less defaults for better grades?

Source: Moody’s
Rating System Continuous Development Process

1. Development and performance measurement – optimization on available data
2. Roll-out into approval process
3. Data collection – ratings and defaults
4. Performance measure on new data – validation
5. Redevelopment/calibration
Discriminative Power of Rating Systems

• Let us have a rating system and let us assume that we know the future (good and bad clients)
 • Let us have a bad X and a good Y
 • Correct signal: rating(X)<rating(Y)
 • Wrong signal: rating(Y)<rating(X)
 • No signal: rating(X)=rating(Y)
• In a discrete setting we may count the numbers of the signals
Discriminative Power of Rating Systems

- To measure prediction power let us count/measure probabilities of the signals
- \(p_1 = \text{Pr}[\text{correct signal}] \)
- \(p_2 = \text{Pr}[\text{wrong signal}] \)
- \(p_3 = \text{Pr}[\text{no signal}] \)
- \(\text{AR} = \text{Accuracy Ratio} = p_1 - p_2 \)
- \(\text{AUC} = \text{Area Under Receiver Operating Characteristic Curve} = p_1 + p_3/2 = (\text{AR} + 1)/2 \)
Cumulative Accuracy Profile

\[AR = \frac{a_R}{a_P} \]
Receiver Operating Characteristic Curve

Proportion of good debtors vs. Proportion of bad debtors

- AUC
- KS / $\sqrt{2}$
- perfect model
- rating model
- random model
AR, AUC, and KS

• The probabilistic and geometric definitions of AR and AUC are equivalent
• It follows immediately from the probabilistic definitions that AR=2AUC-1
• Related Kolmogorov-Smirnov statistics can be defined as the maximum distance of the ROC curve from the diagonal multiplied by \(\sqrt{2} \)
Empirical Estimations of AR (and AUC)

• Empirical AR or AUC depend on the sample used
• Generally there is an error between the theoretical AR and an empirical one
• This must be taken into account comparing the Accuracy ratios of two ratings
• The are however tests of statistical significance
In-sample or Out-sample

• A rating system is usually developed (trained) on a historical sample of defaults

• When the AR of the system is calculated on the training sample (in sample) then we generally must expect better values than on an independent (out sample)

• Real validation should be done on a sample of data collected after the development
S&P Rating Performance

Chart 16. One-Year Gini Coefficients

Source: Standard & Poor's Global Fixed Income Research; Standard & Poor's CreditPro® 7.0.
Comparing two rating systems on the same validation sample

<table>
<thead>
<tr>
<th></th>
<th>Gini</th>
<th>St.Error</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating1</td>
<td>69,00%</td>
<td>1,20%</td>
<td>66,65%</td>
</tr>
<tr>
<td>Rating2</td>
<td>71,50%</td>
<td>1,30%</td>
<td>68,95%</td>
</tr>
</tbody>
</table>

H0: Gini(Rating1)=Gini(Rating2)
\[\chi^2(1)= 9,86 \]

Prob>\[\chi^2(1)= 0,17\% \]

We can conclude that the second rating has a better performance than the first on the 99% probability level.
Measures of Correctness of Categorical Predictions

• In practice we use a cut-off score in order to decide on acceptance/rejection of new applications

• The goal is to accept good applicants and reject bad applicants

• Or in fact minimize losses caused bad accepted applicants and good rejected applicants (opportunity cost)
Measures of Correctness of Categorical Predictions

<table>
<thead>
<tr>
<th></th>
<th>Actual goods</th>
<th>Actual bads</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
<td>g_G</td>
<td>g_B</td>
<td>g</td>
</tr>
<tr>
<td>Rejected</td>
<td>b_G</td>
<td>b_B</td>
<td>b</td>
</tr>
<tr>
<td>Actual numbers</td>
<td>n_G</td>
<td>n_B</td>
<td>n</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Actual goods</th>
<th>Actual bads</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved</td>
<td>$\pi_G F^c(s_c \mid G)$</td>
<td>$\pi_B F^c(s_c \mid B)$</td>
<td>$F^c(s_c \mid G)$</td>
</tr>
<tr>
<td>Rejected</td>
<td>$\pi_G F(s_c \mid G)$</td>
<td>$\pi_B F(s_c \mid B)$</td>
<td>$F(s_c \mid G)$</td>
</tr>
<tr>
<td>Total actual</td>
<td>π_G</td>
<td>π_B</td>
<td>1</td>
</tr>
</tbody>
</table>
Measures of Correctness of Categorical Predictions

• Generally we need to minimize the weighted cost of errors

\[WCE = l \pi_B F^c(s_c \mid B) + q \pi_G F(s_c \mid G) = q \pi_G \cdot C \cdot F^c(s_c \mid B) + F(s_c \mid G) \]

\[w(s_c) = C \cdot F^c(s_c \mid B) + F(s_c \mid G) = C - C \cdot F(s_c \mid B) + F(s_c \mid G) \]

\[C = \frac{l \pi_B}{q \pi_G} \]
Cut-off Optimization

• **Example:** Scorecard 0…100, proposed cut-off 40 or 50

• Validation sample: 10 000 applications, 7 000 approved where we have information on defaults

• We estimate $F(40|G)=12\%, \ F(50|G)=14\%,$ $F(40|B)=70\%, \ F(50|B)=76\%$

• Based on scores assigned to all applications we estimate $\pi_B=10\%$

• Calculate the total and weighted rate of errors if $l=60\%$ and $q=10\%$. Select the optimal cut-off.
Validation of PD estimates

• If the rating is connected with expected PDs then we ask how close is our experienced rate of default on rating grades to the expected PDs

• **Hosmer-Lemeshow Test** – one comprehensive statistics asymptotically χ^2 with number of rating grades – 2 degrees of freedom

$$S_N \chi^2 = \sum_{s=1}^{N} \frac{n_s (PD_s - p_s)^2}{PD_s (1 - PD_s)} = \sum_{s=1}^{N} \frac{(n_s PD_s - d_s)^2}{n_s PD_s (1 - PD_s)}$$
Hosmer-Lemenshow Test Example

<table>
<thead>
<tr>
<th>rating</th>
<th>PD_s</th>
<th>p_s</th>
<th>N_s</th>
<th>Hos.-Lem.</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30%</td>
<td>35.0%</td>
<td>50</td>
<td>0.595238095</td>
<td>0.37201522</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
<td>8.0%</td>
<td>150</td>
<td>0.666666667</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5%</td>
<td>7.0%</td>
<td>70</td>
<td>0.589473684</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1%</td>
<td>1.5%</td>
<td>50</td>
<td>0.126262626</td>
<td></td>
</tr>
</tbody>
</table>

H₀ is not rejected on 90% probability level
Low p-value would be a problem
Binomial Test

• Only for one grade, one-sided

• If $P \leq PD_s$ then the probability of observing or more defaults is at most

$$\hat{B}(d; N_s, PD_s) = \sum_{j=d}^{N_s} \binom{N_s}{j} PD_s^j (1 - PD_s)^{N_s-j}$$

• **Example:** PD=1%, 1000 observations, 13 defaults, is it OK or not?

• The issue of correlation can be solved with a Monte Carlo simulation
Analytical (Expert) Ratings

<table>
<thead>
<tr>
<th>Business Risk</th>
<th>Financial Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry Characteristics</td>
<td>Financial Characteristics</td>
</tr>
<tr>
<td>Competitive Position</td>
<td>Financial Policy</td>
</tr>
<tr>
<td>Marketing</td>
<td>Profitability</td>
</tr>
<tr>
<td>Technology</td>
<td>Capital Structure</td>
</tr>
<tr>
<td>Efficiency</td>
<td>Cash Flow Protection</td>
</tr>
<tr>
<td>Regulation</td>
<td>Financial Flexibility</td>
</tr>
<tr>
<td>Management</td>
<td>Business Risk</td>
</tr>
</tbody>
</table>

Financial and qualitative analysis
Meeting with management
Rating proposal
Rating Committee

Standard & Poor’s Rating Process
Key Financial Ratios

<table>
<thead>
<tr>
<th>Category</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating performance</td>
<td>Return on equity (ROE) = Net income/Equity</td>
</tr>
<tr>
<td></td>
<td>Return on assets (ROA) = Net income/Assets</td>
</tr>
<tr>
<td></td>
<td>Operating Margin = EBITDA/Sales</td>
</tr>
<tr>
<td></td>
<td>Net Profit Margin = Net income/Sales</td>
</tr>
<tr>
<td></td>
<td>Effective tax rate</td>
</tr>
<tr>
<td></td>
<td>Sales/Sales last year</td>
</tr>
<tr>
<td></td>
<td>Productivity = (Sales-Material costs)/Personal costs</td>
</tr>
<tr>
<td>Debt service coverage</td>
<td>EBITDA/Interest</td>
</tr>
<tr>
<td></td>
<td>Capital expenditure/Interest</td>
</tr>
<tr>
<td>Financial leverage</td>
<td>Leverage = Assets/Equity</td>
</tr>
<tr>
<td></td>
<td>Liabilities/Equity</td>
</tr>
<tr>
<td></td>
<td>Bank Debt/Assets</td>
</tr>
<tr>
<td></td>
<td>Liabilities/Liabilities last year</td>
</tr>
<tr>
<td>Liquidity</td>
<td>Current ratio = Current assets/Current Liabilities</td>
</tr>
<tr>
<td></td>
<td>Quick ratio = Quick Assets/Current Liabilities</td>
</tr>
<tr>
<td></td>
<td>Inventory/Sales</td>
</tr>
<tr>
<td>Receivables</td>
<td>Aging of receivable (30,60,90,90+ past due)</td>
</tr>
<tr>
<td></td>
<td>Average collection period</td>
</tr>
</tbody>
</table>
External Agencies’ Rating Symbols

<table>
<thead>
<tr>
<th>Rating</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Grade Ratings</td>
<td></td>
</tr>
<tr>
<td>AAA/Aaa</td>
<td>Highest quality; extremely strong; highly unlikely to be affected by foreseeable events.</td>
</tr>
<tr>
<td>AA/Aa</td>
<td>Very High quality; capacity for repayments is not significantly vulnerable to foreseeable events.</td>
</tr>
<tr>
<td>A/A</td>
<td>Strong payment capacity; more likely to be affected by changes in economic circumstances.</td>
</tr>
<tr>
<td>BBB/Ba</td>
<td>Adequate payment capacity; a negative change in environment may affect capacity for repayment.</td>
</tr>
<tr>
<td>Below Investment Grade Ratings</td>
<td></td>
</tr>
<tr>
<td>BB/Ba</td>
<td>Considered speculative with possibility of developing credit risks.</td>
</tr>
<tr>
<td>B/B</td>
<td>Considered very speculative with significant credit risk.</td>
</tr>
<tr>
<td>CCC/Caa</td>
<td>Considered highly speculative with substantial credit risk.</td>
</tr>
<tr>
<td>CC/Ca</td>
<td>Maybe in default or wildly speculative.</td>
</tr>
<tr>
<td>C/C/D</td>
<td>In bankruptcy or default.</td>
</tr>
</tbody>
</table>
Through the Cycle (TTC) or Point in Time (PIT) Rating

- External agencies do not assign fixed PDs to their ratings
- Observed PDs for the rating classes depend on the cycle
- Should the rating express the actual expected PD conditional on current economic conditions (PIT) or should it be independent on the cycle (TTC)
- External ratings are hybrid - somewhere between TTC and PIT
The Risk of External Rating Agencies

- The rating agencies have become extremely influential – cover $34 trillion of securities
- Ratings are paid by issuers – conflict of interest
- Certain new products (CDO) have become extremely complex to analyze
- Many investors started to rely almost completely on the ratings
- Systematic failure of rating agencies => global financial crisis
Internal Analytical Ratings

- Asset based – asset valuation
- Unsecured general corporate lending or project lending – ability to generate cash flow
- Depends on internal analytical expertise
- Retail, Small Business, and SME also usually depend at least partially on expert decisions
Automated Rating Systems

- Econometric models – discriminant analysis, linear, probit, and logit regressions
- Shadow rating, try to mimic analytical (external) rating systems
- Neural networks
- Rule-based or expert systems
- Structural models, e.g. KMV based on equity prices
Altman’s Z-score

- Altman (1968), maximization of the discrimination power by $z = \sum_{i=1}^{k} \beta_i x_i$ on a dataset of 33 bankrupt + 33 non-bankrupt companies

$$Z = 1.2x_1 + 1.4x_2 + 2.3x_3 + 0.6x_4 + 0.999x_5$$

<table>
<thead>
<tr>
<th>Variable</th>
<th>Ratio</th>
<th>Bankrupt group mean</th>
<th>Non-bankrupt group mean</th>
<th>F-ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>Working capital/Total assets</td>
<td>-6.1%</td>
<td>41.4%</td>
<td>32.60</td>
</tr>
<tr>
<td>x_2</td>
<td>Retained earnings/Total assets</td>
<td>-62.6%</td>
<td>35.5%</td>
<td>58.86</td>
</tr>
<tr>
<td>x_3</td>
<td>EBIT/Total assets</td>
<td>-31.8%</td>
<td>15.4%</td>
<td>25.56</td>
</tr>
<tr>
<td>x_4</td>
<td>Market value of equity/Book value of liabilities</td>
<td>40.1%</td>
<td>247.7%</td>
<td>33.26</td>
</tr>
<tr>
<td>x_5</td>
<td>Sales/Total assets</td>
<td>1.5</td>
<td>1.9</td>
<td>2.84</td>
</tr>
</tbody>
</table>
Altman’s Z-score

• Maximization of the discrimination function – maximization between bad/good group variance and minimization within group variance

\[
\frac{N_1 (\bar{z}_1 - \bar{z})^2 + N_2 (\bar{z}_2 - \bar{z})^2}{\sum_{i=1}^{N_1} (z_{1,i} - \bar{z}_1)^2 + \sum_{i=1}^{N_2} (z_{2,i} - \bar{z}_2)^2}
\]

• Importance of selection of variables

• In fact the approach is similar to the least squares linear regression \(y_i = \beta' \cdot x_i + u_i \)
Logistic Regression

• Latent credit score \(y_i^* = \beta ' \cdot x_i + u_i \)

• Default iff \(y_i^* \leq 0 \), i.e.

\[
p_i = \Pr[y_i = 0 | x_i] = \Pr[u_i + \beta ' \cdot x_i \leq 0] = F(-\beta ' \cdot x_i)
\]

• If the distribution is assumed to be normal than we get the Probit model

• If the residuals follow the logistic distribution than we get the Logit model

\[
F(x) = \Lambda(x) = \frac{e^x}{1 + e^x} = \frac{1}{e^{-x} + 1}
\]
Logit or Probit?

- The models are similar, the tails are heavier for Logit
- Logit model is numerically more efficient
- Its coefficients naturally interpreted – impact on odds or log odds
 \[
 \frac{p_i}{1 - p_i} = e^{-\beta \cdot x_i}, \quad \ln G/B = \ln \frac{1 - p_i}{p_i} = \beta' \cdot x_i
 \]
Maximum Likelihood Estimation

- The coefficients could be theoretically estimated by splitting the sample into pools with similar characteristics and by OLS
- ...or by maximizing the total likelihood or log-likelihood

\[
L(b) = \prod_i F(-b'x_i)^{y_i}(1 - F(-b'x_i))^{1-y_i}
\]

\[
\ln L(b) = l(b) = \sum_i y_i \ln F(-b'x_i) + (1 - y_i) \ln(1 - F(-b'x_i))
\]
Estimators’ properties

• Hence \(\frac{\partial l}{\partial b_j} = \sum_i (y_i - \Lambda(-b'\cdot x_i))x_{i,j} = 0 \) for \(j = 0, \ldots, k \)

• The solution is found by the Newton’s algorithm in a few iterations

• The estimated parameters \(b \) are asymptotic normal and the s.e. are reported by most statistical packages allowing to test the null hypothesis and obtain confidence intervals
Selection of Variables

• In-sample likelihood is maximized if all possible variables are used.
• But insignificant coefficients where we are not sure even with the sign can cause systematic out-sample errors.
• The goal is to have all coefficients significant at least on the 90% probability level and at the same time maximize the Gini coefficient.
Selection of Variables

• Generally it is useful to perform univariate analysis to preselect the variables and make appropriate transformations.

Note that the charts use log B/G odds.
Selection of Variables

- Correlated variables should be eliminated
- In the backward selection procedure variables with low significance are eliminated
- In the forward selection procedure variables are added maximizing the statistic

\[G = -2 \ln \left(\frac{\text{likelihood of the restricted model}}{\text{likelihood of the larger model}} \right) \]

\[\chi^2(k - l) \]
Categorical Variables

- Some categorical values need to be merged

<table>
<thead>
<tr>
<th>Marital Status of borrower</th>
<th>No. of good loans</th>
<th>No. of bad loans</th>
<th>Total</th>
<th>% bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmarried</td>
<td>1200</td>
<td>86</td>
<td>1286</td>
<td>6,69%</td>
</tr>
<tr>
<td>Married</td>
<td>900</td>
<td>40</td>
<td>940</td>
<td>4,26%</td>
</tr>
<tr>
<td>Widowed</td>
<td>100</td>
<td>6</td>
<td>106</td>
<td>5,66%</td>
</tr>
<tr>
<td>Divorced</td>
<td>800</td>
<td>100</td>
<td>900</td>
<td>11,11%</td>
</tr>
<tr>
<td>Separated</td>
<td>60</td>
<td>6</td>
<td>66</td>
<td>9,09%</td>
</tr>
<tr>
<td>Total</td>
<td>1860</td>
<td>152</td>
<td>2012</td>
<td>7,55%</td>
</tr>
</tbody>
</table>

% bad

- Unmarried: 6.69%
- Married: 4.26%
- Widowed: 5.66%
- Divorced: 11.11%
- Separated: 9.09%
- Total: 7.55%
Categorical Variables

• Discriminatory power can be measured looking on significance of the regression coefficients (of the dummy variables)

• Or using the Weight of Evidence (WoE)

\[
WoE = \ln \Pr[c | Good] - \ln \Pr[c | Bad]
\]

• Interpretation follows from the Bayes Theorem

\[
\frac{\Pr[Good | c]}{\Pr[Bad | c]} = \frac{\Pr[c | Good] \cdot \Pr[Good]}{\Pr[c | Bad] \cdot \Pr[Bad]}
\]
Weight of Evidence

| Marital Status of borrower | Pr[c|Good] | Pr[c|Bad] | WoE |
|--------------------------------------|-------------|-------------|-------------|
| Unmarried | 0,64516129 | 0,565789474 | 0,13127829 |
| Married or widowed | 0,537634409 | 0,302631579 | 0,57466264 |
| Divorced or separated | 0,462365591 | 0,697368421 | -0,410958 |
| **IV** | **0,24204342** | | |

- An overall discriminatory power of the variable is measured by the information value

\[
IV = \sum_{c=1}^{C} WoE(c) \cdot Pr[c | Good] - Pr[c | Bad]
\]
Weight of Evidence

• WoE can be used to build a naïve Bayes score (based on the independence of categorical variables)

\[
Pr[c|Good] = Pr[c_1|Good] \cdots Pr[c_n|Good]
\]
\[
Pr[c|Bad] = Pr[c_1|Bad] \cdots Pr[c_n|Bad]
\]

\[
WoE(c) = WoE(c_1) + \cdots + WoE(c_n)
\]

\[
s(c) = s_{pop} + WoE(c_1) + \cdots + WoE(c_n)
\]

• In practice the variables are often correlated
• WoE can be used to replace categorical by continuous variables
Case Study – Scoring Function development

<table>
<thead>
<tr>
<th>Scoring Dataset</th>
<th>observations:</th>
<th>10,936</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Jul 2009 14:56</td>
<td>variables:</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>variable name</th>
<th>variable description</th>
<th># of categorical values</th>
</tr>
</thead>
<tbody>
<tr>
<td>id_deal</td>
<td>Account Number</td>
<td>N/A</td>
</tr>
<tr>
<td>def</td>
<td>Default (90 days, 100 CZK)</td>
<td>2</td>
</tr>
<tr>
<td>mesprij</td>
<td>Monthly Income</td>
<td>N/A</td>
</tr>
<tr>
<td>pocvyz</td>
<td>Number of Dependents</td>
<td>7</td>
</tr>
<tr>
<td>ostoprij</td>
<td>Other Income</td>
<td>N/A</td>
</tr>
<tr>
<td>k1pohlavi</td>
<td>Sex</td>
<td>2</td>
</tr>
<tr>
<td>k2vek</td>
<td>Age</td>
<td>15</td>
</tr>
<tr>
<td>k3stav</td>
<td>Marital Status</td>
<td>6</td>
</tr>
<tr>
<td>k4vzdel</td>
<td>Education</td>
<td>8</td>
</tr>
<tr>
<td>k5stabil</td>
<td>Employment Stability</td>
<td>10</td>
</tr>
<tr>
<td>k6platce</td>
<td>Employer Type</td>
<td>9</td>
</tr>
<tr>
<td>k7forby</td>
<td>Type of Housing</td>
<td>6</td>
</tr>
<tr>
<td>k8forspl</td>
<td>Type of Repayment</td>
<td>6</td>
</tr>
<tr>
<td>k27kk</td>
<td>Credit Card</td>
<td>2</td>
</tr>
<tr>
<td>k28soczar</td>
<td>Social Status</td>
<td>10</td>
</tr>
<tr>
<td>k29bydtel</td>
<td>Home Phone Lines</td>
<td>3</td>
</tr>
<tr>
<td>k30zamtel</td>
<td>Employment Phone Lines</td>
<td>4</td>
</tr>
</tbody>
</table>
Case Study – In Sample x Out Sample

Full Model

<table>
<thead>
<tr>
<th>Run</th>
<th>In-sample</th>
<th>Out-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>71.4%</td>
<td>47.9%</td>
</tr>
<tr>
<td>2</td>
<td>69.2%</td>
<td>54.7%</td>
</tr>
<tr>
<td>3</td>
<td>71.1%</td>
<td>38.8%</td>
</tr>
<tr>
<td>4</td>
<td>70.9%</td>
<td>38.4%</td>
</tr>
<tr>
<td>5</td>
<td>69.2%</td>
<td>43.6%</td>
</tr>
</tbody>
</table>

Restricted Model GINI

<table>
<thead>
<tr>
<th>Run</th>
<th>In-sample</th>
<th>Out-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.9%</td>
<td>57.7%</td>
</tr>
<tr>
<td>2</td>
<td>61.3%</td>
<td>58.7%</td>
</tr>
<tr>
<td>3</td>
<td>61.6%</td>
<td>58.0%</td>
</tr>
<tr>
<td>4</td>
<td>60.0%</td>
<td>62.7%</td>
</tr>
<tr>
<td>5</td>
<td>60.7%</td>
<td>59.5%</td>
</tr>
</tbody>
</table>

Final Model – coarse classification, selection of variables
Combination of Qualitative (Expert) and Quantitative Assessment

1. Qualitative Factors → Logistic Regression → Qualitative Scoring
2. Financial Ratios → Logistic Regression → Financial Scoring
3. Logistic Regression → Final Score + Manual Override → Final Rating
Rating and PD Calibration

- Actual PD
- Predicted PD no calibration
- Predicted PD after calibration

Rating and PD Calibration

- Run a regression of $\ln(G/B)$ on the score as the only explanatory variable

$R^2 = 99.7\%$
TTC and PIT Rating/PD

• Point in Time (PIT) rating/PD prediction is based on all available information including macroeconomic situation – desirable from the business point of view

• Through the Cycle (TTC) rating/PD should be on the other hand independent on the cycle – cannot use explanatory variables that are correlated with the cycle – desirable from the regulatory point of view
Shadow Rating

• Not enough defaults for logistic regression but external ratings – e.g. Large corporations, municipalities, etc.

• Regression is run on PDs or log odds obtained from the ratings and with available explanatory variables

• The developed rating mimics the external agency process

• Useful if there is insufficient internal expertise
Survival Analysis

So far we have implicitly assumed that the probability of default does not depend on the loan age – empirically it is not the case.
Survival Analysis

- T - time of exit
- $f(t), F(t)$ - probability density and cumulative distribution functions
- $S(t) = 1 - F(t)$ - survival function
- $\lambda(t) = \frac{f(t)}{S(t)}$ - hazard function
- The survival function can be expressed in terms of the hazard function that is modeled primarily
Parametric Hazard Models

Parameters estimated by MLE

\[\ln L(\theta) = \sum_{\text{uncensored observations}} \ln \lambda(t | \theta) + \sum_{\text{all observations}} \ln S(t | \theta) \]
Nonparametric Hazard Models

• Cox regression

$$\lambda(t, x) = \lambda_0(t) \exp(-x' \beta),$$

• Baseline hazard function and the risk level function are estimated separately

$$L_i(\beta) = \frac{\lambda(t_i, x_i)}{\sum_{j \in A_i} \lambda(t_j, x_j)} = \frac{\exp(-x_i' \beta)}{\sum_{j \in A_i} \exp(-x_j' \beta)}$$

$$\ln L = \sum_{i=1}^{K} \ln L_i$$

$$L_t = \prod_{i=1}^{n} \left[\lambda_0(t) \exp(x_i' \beta) \right]^{dN_i(t)} \exp\left(-\lambda_0(t) \exp(x_i' \beta)Y_i(t) \right),$$
Cox Regression and an AFT Parametric Model Examples

![Survival Function](image1)

![Hazard rate](image2)

![Survival Function](image3)

![Hazard function](image4)
Markov Chain Models

- Rating transitions driven by a migration matrix with default as a persistent state
- Allows to estimate PDs for longer time horizons

<table>
<thead>
<tr>
<th>From/To</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
<th>CCC/C</th>
<th>D</th>
<th>N.R.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>87.44</td>
<td>7.37</td>
<td>0.46</td>
<td>0.09</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.59</td>
</tr>
<tr>
<td>AA</td>
<td>0.60</td>
<td>86.65</td>
<td>7.78</td>
<td>0.58</td>
<td>0.06</td>
<td>0.11</td>
<td>0.02</td>
<td>0.01</td>
<td>4.21</td>
</tr>
<tr>
<td>A</td>
<td>0.05</td>
<td>2.05</td>
<td>86.96</td>
<td>5.50</td>
<td>0.43</td>
<td>0.16</td>
<td>0.03</td>
<td>0.04</td>
<td>4.79</td>
</tr>
<tr>
<td>BBB</td>
<td>0.02</td>
<td>0.21</td>
<td>3.85</td>
<td>84.13</td>
<td>4.39</td>
<td>0.77</td>
<td>0.19</td>
<td>0.29</td>
<td>6.14</td>
</tr>
<tr>
<td>BB</td>
<td>0.04</td>
<td>0.08</td>
<td>0.33</td>
<td>5.27</td>
<td>75.73</td>
<td>7.36</td>
<td>0.94</td>
<td>1.20</td>
<td>9.06</td>
</tr>
<tr>
<td>B</td>
<td>0.00</td>
<td>0.07</td>
<td>0.20</td>
<td>0.28</td>
<td>5.21</td>
<td>72.95</td>
<td>4.23</td>
<td>5.71</td>
<td>11.36</td>
</tr>
<tr>
<td>CCC/C</td>
<td>0.08</td>
<td>0.00</td>
<td>0.31</td>
<td>0.39</td>
<td>1.31</td>
<td>9.74</td>
<td>46.83</td>
<td>28.83</td>
<td>12.52</td>
</tr>
</tbody>
</table>

Source: Standard & Poor’s Global Fixed Income Research; Standard & Poor’s CreditPro® 7.0.
Expected Loss, PD, LGD, and EAD

- Loan interest rate = internal cost of funds + administrative cost + cost of risk + profit margin
- Credit risk cost = annualized expected loss
 \[RP = \frac{EL}{1 - PD} \]
- \(EL_{abs} = PD \times LGD \times EAD \)
Approval Parametrization

Increase of Marginal Default Rate from 12% to 14%

Increase of Average Default Rate from 5% to 6%

Cut Off: Changed

Accepted Applications
Marginal Risk

Marginal Default Rate According to Average Default Rate

Average Default Rate (in %)

Marginal Default Rate (in %)

0% 5% 10% 15% 20% 25% 30% 35%

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

11.8%
13.7%
18.9%
18.9% 13.7% 11.8%
Cut-off Optimization

Net Income According to Average Default Rate of Accepted Applicants

Optimal Point
Net Income is Maximal

Income Line

Average Default Rate (in %)

Net Income

4.2%
Recovery Rates and LGD Estimation

• LGD = 1 – RR where RR is defined as the market value of the bad loan immediately after default divided by EAD or rather

\[RR = \frac{1}{EAD} \sum_{i=1}^{n} \frac{CF_{t_i}}{(1+r)^{t_i}}. \]

• We must distinguish realized (expost) and expected (ex ante) LGD

• LGD is closely related to provisions and write-offs
Recovery Rate Distribution

![Graph showing the recovery rate distribution for different types of debt: Sr. Secured, Sr. Unsecured, Sr. Subordinated, and Subordinated.]
LGD Regression

• Pool level estimations – basic approach

• Advanced: account level regression requires a sufficient number of observations

\[\text{LGD}_i = f(\beta'x_i) + \varepsilon_i \]

• Link function should transform a normal distribution to an appropriate LGD distribution, e.g. Logit, beta or mixed beta distributions
RR Pro-cyclicality

Defaulted bond and bank loan recovery index, U.S. obligors. Shaded regions indicate recession periods.
(Source: Schuermann, 2002)
Provisions and Write-offs

- LGD is an expectation of loss on a non defaulted account (regulatory and risk management purpose)
- BEEL is an expectation of loss on a defaulted account
- Provisions reduce on balance sheet value of impaired receivables (IFRS) – created and released – immediate P/L impact
- Write-offs (with/without abandoning) – essentially terminal losses, but positive recovery still possible
Exposure at Default

• What will be the exposure of a loan in case of default within a time horizon?

• Relatively simple for ordinary loans but difficult for lines of credits, credit cards, overdrafts, etc.

• Conversion factor – CAD mandatory parameter

\[EAD = \text{Current Exposure} + CF \cdot \text{Undrawn Limit} \]

• Ex post calculation requires a reference point observation

\[CF = CF(a, t_r) = \frac{Ex(t_d) - Ex(t_r)}{L(t_r) - Ex(t_r)} \]
Conversion Factor Dataset

• The CF dataset may be constructed based on a fixed horizon, cohort, or variable time horizon approach
Conversion Factor Estimation

• For very small undrawn amounts CF values do not give too much sense, and so pool based default weighted mean does not behave very well

\[CF(l) = \frac{1}{|RDS(l)|} \sum_{o \in RDS(l)} CF(o) \]

• A weighted or regression based approach recommended

\[CF(l) = \frac{\sum (EAD(o) - Ex(o))}{\sum (L(o) - Ex(o))} \]

\[EAD(o) - Ex(o) = \beta (L(o) - E(o)) + \varepsilon \]

\[CF(l) = \frac{\sum (EAD(o) - Ex(o)) \cdot (L(o) - Ex(o))}{\sum (L(o) - Ex(o))^2} \]
Basel II Requirements

Capital Ratio = \frac{\text{Total Capital}}{\text{Credit Risk} + \text{Market Risk} + \text{Operational Risk RWA}}
Standardized Approach (STD)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Sovereign Risk Weights</th>
<th>Bank Risk Weights</th>
<th>Rating</th>
<th>Corporate Risk Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA to AA-</td>
<td>0%</td>
<td>20%</td>
<td>AAA to AA-</td>
<td>20%</td>
</tr>
<tr>
<td>A+ to A-</td>
<td>20%</td>
<td>50%</td>
<td>A+ to A-</td>
<td>50%</td>
</tr>
<tr>
<td>BBB+ to BBB-</td>
<td>50%</td>
<td>100%</td>
<td>BBB+ to BBB-</td>
<td>100%</td>
</tr>
<tr>
<td>BB+ to B-</td>
<td>100%</td>
<td>100%</td>
<td>BB+ to BB-</td>
<td>100%</td>
</tr>
<tr>
<td>Below B-</td>
<td>150%</td>
<td>150%</td>
<td>Below BB-</td>
<td>150%</td>
</tr>
<tr>
<td>Unrated</td>
<td>100%</td>
<td>100%</td>
<td>Unrated</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 1. Risk Weights for Sovereigns, Banks, and Corporates (Source: BCBC, 2006a)
Internal Rating Based Approach (IRB)

\[K = (UDR(PD) - PD) \cdot LGD \cdot MA \]

\[RWA = EAD \cdot w, \quad w = K \cdot 12.5 \]

Basel II IRB Risk weights for corporates (LGD = 45%, M = 3)
Foundation versus Advanced IRB

- Foundation approach uses regulatory LGD and CF parameters (table give)
- Advanced approach – own estimates of LGD, CF
- For retail segments only STD or IRBA options possible
- In IRBA BEEL and overall EL must be compared with provisions – negative differences => additional capital requirement
Content

✓ Introduction
✓ Credit Risk Management
✓ Rating and Scoring Systems
➢ Portfolio Credit Risk Modeling
• Credit Derivatives
Portfolio Credit Risk Modeling

- Loss Rate vs. Time
 - Unexpected Loss (UL)
 - Expected Loss (EL)

- Frequency vs. Value-at-Risk (VaR)
 - Expected Loss (EL)
 - Unexpected Loss (UL)
 - Potential Losses
 - 100% minus Confidence Level
Markowitz Portfolio Theory

• Can we apply the theory to a loan portfolio?
• Yes, but with economic capital measuring the risk
Expected and Unexpected Loss

• Let X denote the loss on the portfolio in a fixed time horizon T

\[EL = E[X] \]

\[F_x(x) = \Pr[X \leq x] \]

\[q^X_\alpha = \sup\{x \mid F(x) \geq \alpha\} \]

\[UL = q^X_\alpha - E[X] \]

Normality \Rightarrow $UL = \text{VaR}^{rel}_\alpha = q^N_\alpha \cdot \sigma$
Credit VaR

• Credit loss of a credit portfolio can be measured in different ways
 – Market value based
 – Accounting provisions
 – Number of defaults x LGD

• Credit VaR at an appropriate probability level should be compared with the available capital => Economic Capital

• Economic Capital can be allocated to individual transactions, implemented e.g. by Bankers Trust

• Many different Credit VaR models! (CreditMetrics, CreditRisk+, CreditPortfolio View, KMV portfolio Manager, Vasicek Model – Basel II)
CreditMetrics

- Well known methodology by JP Morgan
- Monte Carlo simulation of rating migration
- Today/future bond/loan values determined by ratings
- Historical rating migration probabilities
- Rating migration correlations modeled as asset correlations – structural approach
- Asset return decomposed into a systematic (macroeconomic) and idiosyncratic (specific) parts
Bond Valuation

• Simulated forward values required calculation of implied forward discount rates for individual ratings

\[P = \sum_t \frac{CF(t)}{(1 + r_s(t))^t} \]

\[1 + r_s(t) = (1 + r_s(t_0))(1 + r_s(t_0, t)) \]

\[P_u = \sum_{t \geq t_0} \frac{CF(t)}{(1 + r_u(t_0, t))^{t-t_0}} \]
Rating Migrations

One-year transition matrix (%)

<table>
<thead>
<tr>
<th>Initial Rating</th>
<th>AAA</th>
<th>AA</th>
<th>A</th>
<th>BBB</th>
<th>BB</th>
<th>B</th>
<th>CCC</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>90.81</td>
<td>8.33</td>
<td>0.68</td>
<td>0.06</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AA</td>
<td>0.70</td>
<td>90.65</td>
<td>7.79</td>
<td>0.64</td>
<td>0.06</td>
<td>0.14</td>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>0.09</td>
<td>2.27</td>
<td>91.05</td>
<td>5.52</td>
<td>0.74</td>
<td>0.26</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>BBB</td>
<td>0.02</td>
<td>0.33</td>
<td>5.95</td>
<td>86.93</td>
<td>5.30</td>
<td>1.17</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>BB</td>
<td>0.03</td>
<td>0.14</td>
<td>0.67</td>
<td>7.73</td>
<td>80.53</td>
<td>8.84</td>
<td>1.00</td>
<td>1.06</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0.11</td>
<td>0.24</td>
<td>0.43</td>
<td>6.48</td>
<td>83.46</td>
<td>4.07</td>
<td>5.20</td>
</tr>
<tr>
<td>CCC</td>
<td>0.22</td>
<td>0</td>
<td>0.22</td>
<td>1.30</td>
<td>2.38</td>
<td>11.24</td>
<td>64.86</td>
<td>19.79</td>
</tr>
</tbody>
</table>

Source: Standard & Poor’s CreditWeek (15 April 96)
Recovery Rates

- CreditMetrics models the recovery rates as deterministic or independent on the rate of defaults but a number of studies show a negative correlation.

<table>
<thead>
<tr>
<th>Seniority Class</th>
<th>Mean (%)</th>
<th>Standard Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Secured</td>
<td>53.80</td>
<td>26.86</td>
</tr>
<tr>
<td>Senior Unsecured</td>
<td>51.13</td>
<td>25.45</td>
</tr>
<tr>
<td>Senior Subordinated</td>
<td>38.52</td>
<td>23.81</td>
</tr>
<tr>
<td>Subordinated</td>
<td>32.74</td>
<td>20.18</td>
</tr>
<tr>
<td>Junior Subordinated</td>
<td>17.09</td>
<td>10.90</td>
</tr>
</tbody>
</table>

Source: Carty & Lieberman [96a] — Moody’s Investors Service
Single Bond Portfolio

Distribution of value for a 5-year BBB bond in one year

- Frequency
- Revaluation at risk horizon

Default, CCC, BBB, BB, B, A, AA, AAA
Credit Migration (Merton’s) Structural Model

• In order to capture migrations parameterize credit migrations by a standard normal variable which can be interpreted as a normalized change of assets

• The thresholds calibrated to historical probabilities
Credit Migration (Merton’s) Structural Model

- Default happens if Assets < Debt
- The market value of debt and equity can be valued using option valuation theory
- Stock returns correlations approximate asset return correlations
Merton’s Structural Model

• Creditors‘ payoff at maturity = risk free debt – European put option

\[D(T) = D - \max(D - A(T), 0) \]

• Shareholders’ payoff = European call option

\[E(T) = \max(A(T) - D, 0) \]

• Geometric Brownian Motion

\[dA(t) = \mu A(t) dt + \sigma A(t) dW(t) \quad d(\ln A) = (\mu - \sigma^2 / 2) dt + \sigma dW \]

• The rating or its change is determined by the distance to the default threshold or its change, which can be expressed in the standardized form:

\[r = \frac{1}{\sigma} \left(\ln \frac{A(1)}{A(0)} - (\mu - \sigma^2 / 2) \right) \sim N(0, 1) \]
Rating Migration and Asset Correlation

• Asset returns decomposed into a number of systematic and an idiosyncratic factors

\[r_i = \sum_{j=1}^{k} w_j r(I_j) + w_{k+1} \epsilon_i \]

• The decomposition can be based on historical stock price data or on an expert analysis
Asset Correlation - Example

• 90% explained by one systematic factor

\[r_1 = 0.9r(I) + \sqrt{1-0.9^2}\epsilon_1 = 0.9r(I) + 0.44\epsilon_1 \]

• 70% explained by one systematic factor

\[r_2 = 0.7r(I) + \sqrt{1-0.7^2}\epsilon_2 = 0.7r(I) + 0.71\epsilon_1 \]

• Correlation: \(\rho(r_1, r_2) = 0.9 \cdot 0.7 \cdot \rho(r(I), r(I)) = 0.63 \)

• More factors – index correlations must be taken into account
Portfolio Simulation

Sample systematic factors (Cholesky decomposition) and the specific factors – determine ratings, calculate implied market values.

0.1% percentile simulation
Recovery Rates Distribution

![Graph showing the distribution of recovery rates for different categories: Junior subordinated, Subordinated, Senior subordinated, Senior unsecured. The x-axis represents residual value ranging from 0% to 100%, and the y-axis represents the recovery rate ranging from 0 to 4.5.](image)
Default Rate and Recovery Rate Correlations

Recovery rate/default rate association
Altman defaulted bonds data set (1982-2000)
Dollar weighted average recovery rates to dollar weighted average default rates

\[
y = -2.617x + 50.9 \\
R^2 = 0.4498
\]

\[
y = 0.5609x^2 - 8.7564x + 60.61 \\
R^2 = 0.6091
\]

\[
y = -11.181\ln(x) + 52.332 \\
R^2 = 0.5815
\]

\[
y = 52.739x^{-0.2834} \\
R^2 = 0.6004
\]
CreditRisk+

• Credit Suisse (1997)
• Analytic (generating function) “actuarial” approach
• Can be also implemented/described in a simulation framework:
 1. Starting from an initial PD_0 simulate a new portfolio PD_1
 2. Simulate defaults as independent events with probability PD_1
Credit Risk+
The Full Model

• Exposures are adjusted by fixed LGDs
• The portfolio needs to be divided into size bands (discrete treatment)
• The full model allows a scale of ratings and PDs – simulating overall mean number of defaults with a Gamma distribution
• The portfolio can be divided into independent sector portfolios
Credit Risk+ Details

• Probability generating function

\[X \in \{0, 1, 2, 3, \ldots \} \quad p_n = \Pr[X = n] \quad G_X(z) = \sum_{n=0}^{\infty} p_n z^n \]

• Sum of two variables … product of the generating functions

\[G_X(z) \cdot G_Y(z) = \left(\sum_{n=0}^{\infty} p_n z^n \right) \left(\sum_{n=0}^{\infty} q_n z^n \right) = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} p_i q_{n-i} \right) z^n = G_{X+Y}(z) \]

• Poisson distribution approximating the number of defaults with mean \(\mu = N \cdot p \)

\[G(z) = e^{\mu(z-1)} = \sum_{n=0}^{\infty} e^{-\mu} \frac{\mu^n}{n!} z^n \]
Credit Risk+ Details

• For more rating grades just put \(\mu = \sum_{r=1}^{R} \mu_r \) as

\[
e^{\mu_1(z-1)} e^{\mu_2(z-1)} = e^{(\mu_1+\mu_2)(z-1)}
\]

• The Poisson distribution can be analytically combined with a Gamma distribution generating the number of defaults (i.e. overall PD)

\[
f(x) = \frac{1}{\beta^\alpha \Gamma(\alpha)} e^{-\frac{x}{\beta}} x^{\alpha-1}, \text{ where } \Gamma(\alpha) = \int_0^\infty e^{-x} x^{\alpha-1} dx.
\]
Credit Risk+ Details

- Gamma distribution parameters α and β can be calibrated to $\sigma_0 = N \cdot \sigma_{PD}$ and $\mu_0 = N \cdot PD_0$
Credit Risk+ Details

• The distributions of defaults can be expressed as

\[
Pr[X = n] = \int_0^\infty Pr[X = n | \mu = x] f(x) dx
\]

• And the corresponding generating function

\[
G(z) = \int_0^\infty e^{x(z-1)} f(x) dx = \frac{1}{\beta^\alpha (1 + \beta^{-1} - z)^\alpha}
\]

\[
Pr[X = n] = (1-q)^\alpha \binom{n + \alpha - 1}{n} q^n, \text{ where } q = \frac{\beta}{1+\beta}.
\]
Credit Risk+ Details

• To obtain the loss distribution we assume that the exposures are multiples of L and

$$G(z) = \sum_{n=0}^{\infty} \Pr[\text{portfolio loss} = n \cdot L] \cdot z^n$$

• Individual (RR adjusted) exposures have size $m_j \cdot L$ where $j = 1, \ldots, k$ hence

$$G_j(z) = e^{\mu_j (z^{m_j} - 1)} = \sum_{n=0}^{\infty} e^{-\mu_j} \frac{\mu_j^n}{n!} z^{m_j n}$$

$$G(z) = \prod_{j=1}^{k} G_j(z) = \prod_{j=1}^{k} e^{\mu_j (z^{m_j} - 1)} = e^{\sum_{j=1}^{k} \mu_j} \prod_{j=1}^{k} z^{m_j} = e^{\mu (P(z) - 1)}$$

where

$$\mu = \sum_{j=1}^{k} \mu_j$$

$$P(z) = \sum_{j=1}^{k} \frac{\mu_j}{\mu} z^{m_j}$$
Credit Risk+ Details

- Finally the generating function needs to be combined with the Gamma distribution

\[G(z) = \frac{1}{\beta^\alpha (1 + \beta^{-1} - P(z))^{\alpha}} \]

- Here \(\mu_j \) implicitly adjusts to \(\mu \frac{\mu_{0,j}}{\mu_0} \)

- For more sector we need to assume independence (?!?) to keep the solution analytical

\[G_{\text{final}}(z) = \prod_{s=1}^{S} G_s(z) \]
CreditPortfolio View

• Wilson (1997) and McKinsey
• Ties rates of default to macroeconomic factors
CreditPortfolio View

• Macroeconomic model

\[PD_{j,t} = \Lambda(Y_{j,t}) \]

\[Y_{j,t} = \beta_j 'X_{j,t} + \epsilon_{j,t} \]

\[X_{j,t,i} = \gamma_{j,i,0} + \gamma_{j,i,0}X_{j,t-1,i} + \gamma_{j,i,0}X_{j,t-2,i} + e_{j,t,i} \]

• Simulate \(PD_{j,t}, PD_{j,t+1}, \ldots \) based on information given at \(t - 1 \)

• Adjust rating transition matrix to \(M_{j,t} = M \cdot PD_{j,t} / PD_0 \) and simulate rating migrations
KMV Portfolio Manager

• Based on KMV EDF methodology
• Relies on stock market data
• Idea: there is a one/to/one relationship between stock price and its volatility and (latent) asset value and its volatility

\[A_0 = h_1 \quad E_0, \sigma_E \quad \text{and} \quad \sigma_A = h_2 \quad E_0, \sigma_E \]

• The asset value and volatility determines the risky claim value

\[P(0) = f(A_0, \sigma_A) \]
An Overview of the KMV Model

1. Based on equity data determine initial asset values and volatilities
2. Estimate asset return correlations
3. Simulate future asset values for a time horizon H and determine the portfolio value distribution

$$P(H) = f(A(H), \sigma_A)$$

- Under certain assumptions there is an analytical solution
Estimation of the Asset Value and Asset Volatility

\[E(T) = \max(A(T) - D, 0) \]

\[dA = rA dt + \sigma_A A dW \]

\[E_0 = A_0 N(d_1) - De^{-rT} N(d_2) \]

\[d_1 = \frac{\ln A_0 / D + (r + \sigma_A^2 / 2)T}{\sigma_A \sqrt{T}} \quad \text{and} \quad d_2 = d_1 - \sigma_A \sqrt{T} \]

\[dE = \left(\frac{\partial E}{\partial A} rA + \frac{\partial E}{\partial t} + \frac{1}{2} \frac{\partial^2 E}{\partial A^2} \sigma_A^2 A^2 \right) dt + \frac{\partial E}{\partial A} \sigma_A A dW \quad \frac{\partial E}{\partial A} = N(d_1) \]

\[\sigma_E = \frac{A_0}{E_0} N(d_1) \sigma_A \]

\[E_0 = f_1(A_0, \sigma_A), \quad \sigma_E = f_2(A_0, \sigma_A) \]
Distance to Default and EDF

• If just D is payable at T then the risk neutral probability of default would be

\[Q_T = \Pr[V_T < K] = \Phi(-d_2) \]

• But since the capital structure is generally complex we use it or in fact \(DD = d_2 \), the distance to default in one year horizon as a “score” setting

\[DPT = STD + LTD / 2 \]
Distance to Default and EDF
PD callibration

• The distance to default is calibrated to PDs based on historical default observations
EDF of a firm versus S&P rating
KMV versus S&P rating transition matrix

KMV 1-year transition matrix based on non-overlapping EDF ranges

<table>
<thead>
<tr>
<th>Initial rating</th>
<th>Rating at year-end (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AAA</td>
</tr>
<tr>
<td>AAA</td>
<td>66.26</td>
</tr>
<tr>
<td>AA</td>
<td>21.66</td>
</tr>
<tr>
<td>A</td>
<td>2.76</td>
</tr>
<tr>
<td>BBB</td>
<td>0.30</td>
</tr>
<tr>
<td>BB</td>
<td>0.08</td>
</tr>
<tr>
<td>B</td>
<td>0.01</td>
</tr>
<tr>
<td>CCC</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Source: KMV Corporation.

Transition matrix based on actual rating changes

<table>
<thead>
<tr>
<th>Initial rating</th>
<th>Rating at year-end (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AAA</td>
</tr>
<tr>
<td>AAA</td>
<td>90.81</td>
</tr>
<tr>
<td>AA</td>
<td>0.70</td>
</tr>
<tr>
<td>A</td>
<td>0.09</td>
</tr>
<tr>
<td>BBB</td>
<td>0.02</td>
</tr>
<tr>
<td>BB</td>
<td>0.03</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>CCC</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Source: Standard & Poor’s CreditWeek (April 15, 1996).
Risk neutral probabilities

• The calibrated PDs are historical, but we need risk neutral in order to value the loans

\[PV = E_Q[\text{discounted cash flow}] = \sum_{i=1}^{n} e^{-rT_i} E_Q[\text{cash flow}_i] = \]

\[= \sum_{i=1}^{n} e^{-rT_i} CF_i (1 - LGD) + \sum_{i=1}^{n} e^{-rT_i} (1 - Q_i) CF_i LGD \]

Example

<table>
<thead>
<tr>
<th>Time</th>
<th>CFi</th>
<th>Qi</th>
<th>e^-rT_i</th>
<th>PV1</th>
<th>PV2</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 000,00</td>
<td>3%</td>
<td>0,9704</td>
<td>1 940,89</td>
<td>2 824,00</td>
<td>4 764,89</td>
</tr>
<tr>
<td>2</td>
<td>5 000,00</td>
<td>6,50%</td>
<td>0,9418</td>
<td>1 883,53</td>
<td>2 641,65</td>
<td>4 525,18</td>
</tr>
<tr>
<td>3</td>
<td>105 000,00</td>
<td>9,90%</td>
<td>0,9139</td>
<td>38 385,11</td>
<td>51 877,48</td>
<td>90 262,59</td>
</tr>
<tr>
<td>Total</td>
<td>42 209,53</td>
<td>57 343,12</td>
<td>99 552,65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adjustment of the real world
EDFs

\[dA^* = \mu A^* \, dt + \sigma A^* \, dW \quad EDF_T = \Pr[A^*(T) < K_T] \]

\[dA = rA \, dt + \sigma A \, dW \quad Q_T = \Pr[A(T) < K_T] \]

\[EDF_T = N(-d_2), \quad d_2 = \frac{\ln A_0 / K_T + (\mu - \sigma^2 / 2)T}{\sigma \sqrt{T}} \]

\[Q_T = N(-d_2^*), \quad d_2^* = \frac{\ln A_0 / K_T + (r - \sigma^2 / 2)T}{\sigma \sqrt{T}} \]

\[d_2 = d_2^* - (\mu - r)\sqrt{T} / \sigma \quad Q_T = N\left(N^{-1}(EDF_T) + \frac{\mu - r}{\sigma} \sqrt{T}\right) \]

CAPM: \[\mu - r = \beta \pi \quad \pi = \mu_M - r \]
Vasicek’s Model and Basel II

• Relatively simple, analytic, asymptotic portfolio with constant asset return correlation

• Let T_j be the time to default of an obligor j with the probability distribution X_j then $X_j = N^{-1}(Q_j(T_j))$ corresponds to the standardized asset return and $T_j \leq 1$ iff

$$X_j \leq N^{-1}(PD)$$

• Hence $PD = Q_j(1)$
Vasicek’s Formula

• Let us decompose the X to a systematic and an idiosyncratic part and express the PD conditional on systematic variable

$$X_j = \sqrt{\rho} \cdot M + \sqrt{1-\rho} \cdot Z_j$$

$$PD_1(m) = \Pr \left[T_j \leq 1 \mid M = m \right] = \Pr \left[X_j \leq N^{-1}(PD) \mid M = m \right] =$$

$$= \Pr \left[\sqrt{\rho} \cdot M \sqrt{1-\rho} \cdot Z_j \leq N^{-1}(PD) \mid M = m \right] =$$

$$= \Pr \left[Z_j \leq \frac{N^{-1}(PD) - \sqrt{\rho} m}{\sqrt{1-\rho}} \right] = N \left(\frac{N^{-1}(PD) - \sqrt{\rho} m}{\sqrt{1-\rho}} \right)$$
Vasicek’s Formula

- So the unexpected default rate on a given probability level $1 - \alpha$ is

$$UDR_\alpha (PD) = N \left(\frac{N^{-1}(PD) + \sqrt{\rho} \cdot N^{-1}(\alpha)}{\sqrt{1 - \rho}} \right)$$

- If multiplied by a constant LGD and EAD we get a “simple” estimate of unexpected loss attributable to a single receivable
Basel II Capital Formula

\[K = (U\text{DR}_{99.9\%} (PD) - PD) \cdot LGD \cdot MA \]

\[RWA = EAD \cdot w, \ w = K \cdot 12.5 \]

- Correlation is given by the regulation and depends on the exposure class, e.g. for corporates

\[\rho = 0.12 \frac{1 - e^{-50PD}}{1 - e^{-50}} + 0.24 \frac{e^{-50PD} - e^{-50}}{1 - e^{-50}} \]

- Similarly the maturity adjustment

\[MA = \frac{1 + (M - 2.5)b}{1 - 1.5b}, \ b = (0.1182 - 0.05478 \cdot \ln PD)^2 \]
Basel II Problems

- Vague modeling of unexpected LGD
- The issue of PDxLGDxEAD correlation
- Sensitivity to the definition of default
- Procyclicality!!!
Basel III ?!

- Recent BCBS proposals reacting to the crisis
- Principles for Sound Liquidity Risk Management and Supervision (9/2008)
- International framework for liquidity risk measurement, standards and monitoring - consultative document (12/2009)
- Consultative proposals to strengthen the resilience of the banking sector announced by the Basel Committee (12/2009)
Basel III ?!

- Comments could be sent by 16/4/2010 (viz www.bis.org)
- Final decision approved 12/2010
- Key elements
 - Stronger Tier 1 capital
 - Higher capital requirements on counterparty risk
 - Penalization for high leverage and complex models dependence
 - Counter-cyclical capital requirement
 - Provisioning based on expected losses
 - Minimum liquidity requirements
Content

- Introduction
- Credit Risk Management
- Rating and Scoring Systems
- Portfolio Credit Risk Modeling
- Credit Derivatives
Credit Derivatives

- Payoff depends on creditworthiness of one or more subjects
- Single name or multi-name
- Credit Default Swaps, Total Return Swaps, Asset Backed Securities, Collateralized Debt Obligations
- Banks – typical buyers of credit protection, insurance companies – sellers
Credit Default Swaps

Global CDS Outstanding Notional Amount

- Billion USD

- CDS Notional
Credit Default Swaps

- CDS spread usually paid in arrears quarterly until default
- Notional, maturity, definition of default
- Reference entity (single name)
- Physical settlement – protection buyer has the right to sell bonds (CTD)
- Cash settlement – calculation agent, or binary
- Can be used to hedge corresponding bonds
Valuation of CDS

• Requires risk neutral probabilities of default for all relevant maturities

• Market value of a CDS position is then based on the general formula

\[MV = E_Q[\text{discounted cash flow}] = \sum_{i=1}^{n} e^{-rT_i} E_Q[\text{cash flow}_i] \]

• Market equilibrium CDS spread is the spread that makes \(MV = 0 \)
Estimating Default Probabilities

Rating systems

↓

Historical PDs

↓

Bond prices

→ Risk neutral PDs

CDS Spreads
Credit Indices

• In principle averages of single name CDS spreads for a list of companies
• In practice traded multi-name CDS
• CDX NA IG – 125 investment grade companies in N.America
• iTraxx Europe - 125 investment grade European companies
• Standardized payment dates, maturities (3,5,7,10), and even coupons – market value initial settlement
CDS Forwards and Options

• Defined similarly to forwards and options on other assets or contracts, e.g. IRS

• Valuation of forwards can be done just with the term structure of risk neutral probabilities

• But valuation of options requires a stochastic modeling of probabilities of default (or intensities – hazard rates)
Basket CDS and Total Return Swaps

- Many different types of basket CDS: add-up, first-to-default, k-th to default ... requires credit correlation modeling
- The idea of Total Return Swap (compare to Asset Swaps) is to swap total return of a bond (or portfolio) including credit losses for Libor + spread on the principal (the spread covers the receivers risk of default!)
Asset Backed Securities (CDO,..)

- Allow to create AAA bonds from a portfolio of poor assets
CDO market

![Global CDO Issuance Graph]

<table>
<thead>
<tr>
<th>Year</th>
<th>High Yield Bonds</th>
<th>High Yield Loans</th>
<th>Investment Grade Bonds</th>
<th>Mixed Collateral</th>
<th>Other</th>
<th>Other Swaps</th>
<th>Structured Finance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>11 321</td>
<td>22 715</td>
<td>29 892</td>
<td>2 090</td>
<td>932</td>
<td>1 038</td>
<td></td>
<td>67 988</td>
</tr>
<tr>
<td>2001</td>
<td>13 434</td>
<td>27 368</td>
<td>31 959</td>
<td>2 194</td>
<td>2 705</td>
<td>794</td>
<td></td>
<td>78 454</td>
</tr>
<tr>
<td>2002</td>
<td>2 401</td>
<td>30 388</td>
<td>21 453</td>
<td>1 915</td>
<td>9 418</td>
<td>17 499</td>
<td></td>
<td>83 074</td>
</tr>
<tr>
<td>2003</td>
<td>10 091</td>
<td>22 584</td>
<td>11 770</td>
<td>22</td>
<td>6 947</td>
<td>110</td>
<td></td>
<td>86 630</td>
</tr>
<tr>
<td>2004</td>
<td>8 019</td>
<td>32 192</td>
<td>11 606</td>
<td>1 095</td>
<td>14 873</td>
<td>6 775</td>
<td></td>
<td>157 821</td>
</tr>
<tr>
<td>2005</td>
<td>1 413</td>
<td>69 441</td>
<td>3 878</td>
<td>893</td>
<td>15 811</td>
<td>2 257</td>
<td></td>
<td>251 265</td>
</tr>
<tr>
<td>2006</td>
<td>941</td>
<td>171 906</td>
<td>24 865</td>
<td>20</td>
<td>14 447</td>
<td>762</td>
<td></td>
<td>520 645</td>
</tr>
<tr>
<td>2007</td>
<td>2 151</td>
<td>138 827</td>
<td>78 571</td>
<td>1 722</td>
<td>1 147</td>
<td>259 184</td>
<td></td>
<td>481 601</td>
</tr>
<tr>
<td>2008</td>
<td>27 489</td>
<td>15 955</td>
<td></td>
<td></td>
<td></td>
<td>18 442</td>
<td></td>
<td>61 887</td>
</tr>
<tr>
<td>2009</td>
<td>2 033</td>
<td>1 972</td>
<td></td>
<td></td>
<td></td>
<td>331</td>
<td></td>
<td>4 336</td>
</tr>
</tbody>
</table>
Cash versus Synthetic CDOs

- Synthetic CDOs are created using CDS

<table>
<thead>
<tr>
<th>BY ISSUANCE TYPE (SMM)</th>
<th>TOTAL ISSUANCE</th>
<th>Cash Flow and Hybrid</th>
<th>Synthetic Funded</th>
<th>Market Value</th>
<th>Arbitrage</th>
<th>Balance Sheet</th>
<th>Long Term</th>
<th>Short Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-Q1</td>
<td>24,982.5</td>
<td>18,807.8</td>
<td>6,174.7</td>
<td>0.0</td>
<td>23,157.5</td>
<td>1,825.0</td>
<td>20,495.1</td>
<td>4,487.4</td>
</tr>
<tr>
<td>2004-Q2</td>
<td>42,861.6</td>
<td>25,786.7</td>
<td>17,074.9</td>
<td>0.0</td>
<td>39,715.5</td>
<td>3,145.1</td>
<td>29,611.4</td>
<td>13,250.2</td>
</tr>
<tr>
<td>2004-Q3</td>
<td>42,086.6</td>
<td>36,106.0</td>
<td>5,329.7</td>
<td>650.0</td>
<td>38,207.7</td>
<td>3,878.8</td>
<td>34,023.0</td>
<td>8,062.7</td>
</tr>
<tr>
<td>2004-Q4</td>
<td>47,487.8</td>
<td>38,829.9</td>
<td>8,657.9</td>
<td>0.0</td>
<td>45,917.8</td>
<td>1,569.9</td>
<td>38,771.4</td>
<td>8,716.4</td>
</tr>
<tr>
<td>2004 TOTAL</td>
<td>157,418.6</td>
<td>119,531.3</td>
<td>37,237.2</td>
<td>650.0</td>
<td>146,998.5</td>
<td>10,419.8</td>
<td>122,901.8</td>
<td>34,516.7</td>
</tr>
<tr>
<td>2005-Q1</td>
<td>49,610.2</td>
<td>40,843.9</td>
<td>8,768.3</td>
<td>0.0</td>
<td>43,758.8</td>
<td>5,851.4</td>
<td>45,175.2</td>
<td>4,435.0</td>
</tr>
<tr>
<td>2005-Q2</td>
<td>71,450.5</td>
<td>49,524.6</td>
<td>21,695.9</td>
<td>230.0</td>
<td>62,050.5</td>
<td>9,400.0</td>
<td>65,043.6</td>
<td>8,069.9</td>
</tr>
<tr>
<td>2005-Q3</td>
<td>52,007.2</td>
<td>44,253.1</td>
<td>7,754.1</td>
<td>0.0</td>
<td>49,638.7</td>
<td>2,370.5</td>
<td>48,656.3</td>
<td>3,950.9</td>
</tr>
<tr>
<td>2005-Q4</td>
<td>98,735.4</td>
<td>71,604.3</td>
<td>26,741.1</td>
<td>380.0</td>
<td>71,957.6</td>
<td>26,777.8</td>
<td>88,763.5</td>
<td>9,571.9</td>
</tr>
<tr>
<td>2005 TOTAL</td>
<td>271,803.3</td>
<td>206,225.9</td>
<td>64,957.4</td>
<td>620.0</td>
<td>227,403.6</td>
<td>44,399.7</td>
<td>247,638.6</td>
<td>24,164.7</td>
</tr>
<tr>
<td>2006-Q1</td>
<td>108,012.7</td>
<td>83,796.1</td>
<td>24,222.6</td>
<td>0.0</td>
<td>101,153.6</td>
<td>6,659.1</td>
<td>104,084.0</td>
<td>3,962.7</td>
</tr>
<tr>
<td>2006-Q2</td>
<td>124,977.9</td>
<td>97,280.3</td>
<td>24,084.8</td>
<td>2,909.2</td>
<td>102,564.6</td>
<td>22,413.3</td>
<td>119,986.1</td>
<td>4,991.8</td>
</tr>
<tr>
<td>2006-Q3</td>
<td>138,628.7</td>
<td>102,167.4</td>
<td>14,703.6</td>
<td>21,757.5</td>
<td>125,945.2</td>
<td>12,683.5</td>
<td>135,928.5</td>
<td>2,700.2</td>
</tr>
<tr>
<td>2006-Q4</td>
<td>180,090.3</td>
<td>131,525.1</td>
<td>25,307.9</td>
<td>23,267.3</td>
<td>142,534.3</td>
<td>37,559.0</td>
<td>180,090.3</td>
<td>0.0</td>
</tr>
<tr>
<td>2006 TOTAL</td>
<td>551,709.6</td>
<td>414,742.9</td>
<td>89,042.7</td>
<td>47,924.0</td>
<td>472,197.7</td>
<td>79,511.9</td>
<td>540,088.9</td>
<td>11,620.7</td>
</tr>
<tr>
<td>2007-Q1</td>
<td>186,467.6</td>
<td>140,310.1</td>
<td>27,426.2</td>
<td>18,722.3</td>
<td>156,792.0</td>
<td>20,675.6</td>
<td>181,341.2</td>
<td>5,126.4</td>
</tr>
<tr>
<td>2007-Q2</td>
<td>175,939.4</td>
<td>135,021.4</td>
<td>8,403.0</td>
<td>32,515.0</td>
<td>159,385.4</td>
<td>22,554.0</td>
<td>167,459.2</td>
<td>8,480.2</td>
</tr>
<tr>
<td>2007-Q3</td>
<td>93,063.6</td>
<td>56,053.3</td>
<td>5,196.9</td>
<td>31,811.4</td>
<td>86,331.4</td>
<td>6,732.2</td>
<td>90,710.0</td>
<td>2,536.3</td>
</tr>
<tr>
<td>2007-Q4</td>
<td>47,508.2</td>
<td>31,257.9</td>
<td>5,202.3</td>
<td>11,048.0</td>
<td>39,593.7</td>
<td>7,014.5</td>
<td>47,508.2</td>
<td>0.0</td>
</tr>
<tr>
<td>2007 TOTAL</td>
<td>502,978.8</td>
<td>362,651.7</td>
<td>48,230.4</td>
<td>94,096.7</td>
<td>436,102.5</td>
<td>66,876.3</td>
<td>487,018.6</td>
<td>15,960.2</td>
</tr>
<tr>
<td>2008-Q1</td>
<td>19,470.7</td>
<td>11,930.1</td>
<td>513.7</td>
<td>7,026.9</td>
<td>18,111.8</td>
<td>1,358.9</td>
<td>19,470.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2008-Q2</td>
<td>17,336.7</td>
<td>14,280.4</td>
<td>698.5</td>
<td>2,377.8</td>
<td>10,743.7</td>
<td>8,593.0</td>
<td>17,336.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2008 YTD TOTAL</td>
<td>36,807.4</td>
<td>26,190.5</td>
<td>1,212.2</td>
<td>9,404.7</td>
<td>28,855.5</td>
<td>7,951.9</td>
<td>36,807.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Single Tranche Trading

- Synthetic CDO tranches based on CDX or iTraxx

Table 23.6 Five-year CDX NA IG and iTraxx Europe tranches on March 28, 2007. Quotes are 30/360 in basis points except for 0%-3% tranche, where the quote indicates the percent of the tranche principal that must be paid up front in addition to 500 basis points per year.

<table>
<thead>
<tr>
<th>CDX NA IG</th>
<th>0–3%</th>
<th>3–7%</th>
<th>7–10%</th>
<th>10–15%</th>
<th>15–30%</th>
<th>30–100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranche Quote</td>
<td>26.85%</td>
<td>103.8</td>
<td>20.3</td>
<td>10.3</td>
<td>4.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>iTraxx Europe</th>
<th>0–3%</th>
<th>3–6%</th>
<th>6–9%</th>
<th>9–12%</th>
<th>12–22%</th>
<th>22–100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranche Quote</td>
<td>11.25%</td>
<td>57.7</td>
<td>14.4</td>
<td>6.4</td>
<td>2.6</td>
<td>1.2</td>
</tr>
</tbody>
</table>

John Hull, Option, Futures, and Other Derivatives, 7th Edition
Valuation of CDOs

• Sources of uncertainty: times of default of individual obligor and the recovery rates (assumed deterministic in a simplified approach)

• Everything else depends on the Waterfall rules (but in practice often very complex to implement precisely)
Valuation of CDOs

• Monte Carlo simulation approach:
 • In one run simulate the times to default of individual obligors in the portfolio using risk neutral probabilities and appropriate correlation structure
 • Generate the overall cash flow (interest and principal payments) and the cash flows to individual tranches
 • Calculate for each tranche the mean (expected value) of the discounted cash flows
Gaussian Copula of Time to Default

• Gaussian Copula is the approach when correlation is modeled on the standard normal transformation of the time to default

\[X_j = N^{-1}(Q_j(T_j)) \]

\[X_j = \sqrt{\rho \cdot M} + \sqrt{1-\rho} \cdot Z_j \]

• The single factor approach can be used to obtain an analytical valuation

• Generally used also in simulations
Implied Correlation

- Correlations implied by market quotes based on the standard one factor model (similarly to implied volatility)

<table>
<thead>
<tr>
<th>Compound correlations</th>
<th>0–3%</th>
<th>3–6%</th>
<th>6–9%</th>
<th>9–12%</th>
<th>12–22%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranche</td>
<td>18.3%</td>
<td>9.3%</td>
<td>14.3%</td>
<td>18.2%</td>
<td>24.1%</td>
</tr>
<tr>
<td>Quote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base correlations</th>
<th>0–3%</th>
<th>0–6%</th>
<th>0–9%</th>
<th>0–12%</th>
<th>0–22%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranche</td>
<td>18.3%</td>
<td>27.3%</td>
<td>34.9%</td>
<td>41.4%</td>
<td>58.1%</td>
</tr>
<tr>
<td>Quote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

John Hull, Option, Futures, and Other Derivatives, 7th Edition
Alternative Models

• The correlations are uncertain!

• The Gaussian correlations may go up if there is a turmoil on the market!

• Alternative copulas: Student t copula, Clayton copula, Archimedean copula, Marshall-Olkin copula

• Random factor loading \(x_i = a(F)F + \sqrt{1 - a(F)} Z_i \)

• Dynamic models – stochastic modeling of portfolio loss over time – structural (assets), reduced form (hazard rates), top down models (total loss)